Лекция 6. Рекуррентные нейронные сети
6.1. Введение
В предыдущей главе предоставили нейронным сетям возможность изучить иерархию весов, напоминающую классификацию n-грамм в тексте. Этот подход оказался очень эффективным для анализа тональности или, в более широком смысле, классификации текста. Однако одним из недостатков такого подхода является их неспособность моделировать контекстную информацию в длинных последовательностях.1) Во многих ситуациях в NLP желательно фиксировать долгосрочные зависимости и поддерживать контекстный порядок между словами для определения общего значения текста. В этой главе мы представляем рекуррентные нейронные сети (РНС), которые расширяют глубокое обучение до последовательностей.
Последовательная информация и долгосрочные зависимости в NLP традиционно полагались на HMM для вычисления контекстной информации, например, при синтаксическом анализе зависимостей.
Одним из ограничений использования цепи Маркова для задач, ориентированных на последовательность, является то, что генерация каждого прогноза ограничена фиксированным числом предыдущих состояний.
Однако RNN ослабляют это ограничение, накапливая информацию с каждого временного шага в «скрытое состояние». Это позволяет «суммировать» последовательную информацию и делать прогнозы на основе всей истории последовательности.
Еще одно преимущество RNN - их способность изучать представления для последовательностей переменной длины, таких как предложения, документы и образцы речи. Это позволяет отображать два образца разной длины в одно и то же пространство функций, что делает их сопоставимыми. В контексте языкового перевода, например, во входном предложении может быть больше слов, чем в его переводе, что требует переменного количества вычислительных шагов. Таким образом, очень полезно знать всю длину предложения, прежде чем предсказывать перевод. Мы изучим этот пример подробнее в конце этой главы.
В этой главе мы начнем с описания основных строительных блоков RNN и того, как они сохраняют память. Затем мы описываем процесс обучения для RNN и обсуждаем проблему исчезающего градиента, регуляризацию и варианты RNN.

1) Это утверждение сделано в базовом контексте RNN. Споры о превосходстве RNN в последовательных контекстах являются активной областью исследований.
Далее мы можем показать, как включить ввод текста в повторяющиеся архитектуры, используя представления слов и символов. Затем мы представляем некоторые традиционные архитектуры RNN в NLP, а затем переходим к более современным архитектурам. Глава завершается тематическим исследованием нейронного машинного перевода и обсуждением будущего направления РНС.
6.2. Основные строительные блоки RNN
RNN – это стандартная нейронная сеть с прямой связью, применяемая к векторным входам в последовательности. Однако для того, чтобы включить последовательный контекст в прогнозирование следующего временного шага, необходимо сохранить «память» о предыдущих временных шагах в последовательности.
6.2.1. Повторение и память
Сначала рассмотрим концептуально идею повторения. Определим входную последовательность длины T как X, где X = {x1, x2, ..., xT}, так что xt ∈ RN является векторным входом в момент времени t. Затем мы определяем нашу память или историю до времени t включительно как ht.2)
Таким образом, мы можем определить наш вывод ot как:
ot = f (xt, ht−1) (6.1)
где функция f отображает память и ввод на вывод - память из предыдущего временного шага - ht−1, вход - xt на выход ot. Для начального случая x1, h0 - нулевой вектор 0.
Абстрактно считается, что выход ot суммировал информацию из текущего входа xt и предыдущей истории из ht-1. Следовательно, ot можно рассматривать как вектор истории ht для всей последовательности до момента t включительно. Это дает уравнение:
ht = ot = f (xt, ht−1) (6.2)
Здесь мы видим, откуда появился термин «повторение»: применение одной и той же функции для каждого экземпляра, при этом вывод напрямую зависит от предыдущего результата.
Более формально мы можем распространить эту концепцию на нейронные сети, переопределив функцию преобразования f следующим образом:
ht = f (Uxt + Wht−1) (6.3)

2) Этот вектор истории в дальнейшем будет называться скрытым состоянием по понятным причинам.

где W и U - весовые матрицы W, U ∈ R (N × N), а f - нелинейная функция, такая как tanh, σ или ReLU. На рисунке 6.1 показана схема простой RNN, которую мы здесь описали.
[image:]
Рис. 6.1: Схема рекуррентной нейронной сети
6.2.2. Пример PyTorch
Приведенный ниже фрагмент кода иллюстрирует реализацию PyTorch простой RNN описано ранее. Он иллюстрирует повторяющиеся вычисления в современной структуре.
1 # PyTorch RNN D e f i n i t i o n
2 import torch. nn as nn
3 from torch. autograd import Variable
4 import torch. optim as optim
5
6 c l a s s RNN(nn . Module) :
7
8 def init (self , input size):
9 s u p e r (RNN, s e l f). init ()
10
11 self . input size = input size
12 self . hidden size = input size
13 self . output size = input size
14
15 sel f .U = nn . Linear (input size , self . hidden size)
16 s e l f .W = nn . L i n e a r (s e l f . h i d d e n size , self . output size)
17
18 def forward (self , input , hidden) :
19 Ux = s e l f .U(i n p u t)
20 Wh = s e l f .W(h i d d e n)
21 o u t p u t = Ux + Wh
22 return output
23
24 rnn = RNN(i n p u t size)
25
26 # Training the network
27 o p t i m i z e r = optim . Adam(rnn . p a r a m e t e r s () , l r = l e a r n i n g rate ,
weight decay =1e−5)
28
29 for epoch in range (n epoch) :
30 for data , target in train loader :
31 # Get samples
32 input = Variable (data)
33
34 # Forward Propagation
35 hidden = Variable (torch . zeros (1 , rnn . hidden size))
36 for i in range (input . size () [0]) :
37 output = rnn (input [i] , hidden)
38 hidden = output
39
40 # Error Computation
41 loss = F. nll loss (output , target)
42
43 # Clear gradients
44 optimizer . zero grad ()
45
46 # Backpropagation
47 loss . backward ()
48
49 # Parameter Update
50 optimizer . step ()

В этом фрагменте мы выполняем классификацию (а затем вычисление ошибок) на каждом временном шаге. Вместо выполнения вычисления по мере вычисления выходных данных ошибка вычисляется после завершения прямого распространения для каждого временного шага. Ошибка относительно каждого временного шага распространяется в обратном направлении.
Этот фрагмент сам по себе неполный, потому что наш размер ввода, размер вывода и скрытый размер обычно будут различаться в зависимости от проблемы, как мы увидим в следующих разделах.
6.3. RNN и свойства
Давайте теперь сосредоточимся на типичной реализации RNN, способах ее обучения и некоторых трудностях, которые возникают при их обучении.
6.3.1. Прямое и обратное распространение в RNN
RNN обучаются с помощью обратного распространения и градиентного спуска аналогично сетям прямого распространения, которые мы видели ранее: прямое распространение примера, вычисление ошибки для прогноза, вычисление градиентов для каждого набора весов с помощью обратного распространения и обновление весов в соответствии с методом оптимизации градиентного спуска.
Уравнения прямого распространения для ht и прогноз на выходе yˆt следующие:
ht = tanh (Uxt + Wht−1)
yˆt = softmax (Vht) (6.4)

где обучаемыми параметрами являются U, W и V.3) U включает информацию из xt, W включает повторяющееся состояние, а V изучает преобразование в размер вывода и классификацию. Схема этой РНС представлена ​​на рис. 6.2.
[image:]
Рис. 6.2: Прямое распространение простой RNN
Мы вычисляем ошибку, используя потерю кросс-энтропии на каждом временном шаге t, где yt - цель.
Et = −yt log yˆt. (6.5)
Это дает нам следующие общие потери:
L (y, yˆ) = - 1 / N ∑t yt logyˆt. (6.6)
Градиенты вычисляются путем оценки каждого пути, который способствовал предсказанию yˆt. Этот процесс называется обратным распространением во времени (BPTT). Этот процесс проиллюстрирован на рис. 6.3.

3) Обычно однократную весовую матрицу W RNN разделяют в формуле. (6.3) на две отдельные весовые матрицы, здесь U и W. Это позволяет снизить вычислительные затраты и принудительно разделить скрытое состояние и входные данные на ранних этапах обучения.

Параметры нашей RNN - это U, V и W, поэтому мы должны вычислить градиент нашей функции потерь относительно этих матриц. На рисунке 6.4 показано обратное распространение через шаг RNN.
[image:]
Рис. 6.3: Обратное распространение во времени показано относительно ошибки при t = 3. Ошибка E3 состоит из входных данных каждого предыдущего временного шага и входных данных для этих временных шагов. Этот рисунок исключает обратное распространение по отношению к E1, E2 и E4.
[image:]
Рис. 6.4: Обратное распространение через один временной шаг простой RNN
6.3.1.1. Выходные веса (V)
Матрица весов V управляет выходной размерностью yˆ и не влияет на рекуррентную связь. Следовательно, вычисление градиента аналогично вычислению линейного слоя.
Для удобства пусть
qt = Vht. (6.7)
Потом,
∂Et / ∂Vi,j = ∂Et/∂yˆtk ∂yˆtk/∂qtl ∂qtl/∂Vi, j. (6.8)
Из нашего определения Et (7.5) мы получаем, что:
∂Et / ∂yˆtk = −ytk /yˆtk. (6.9)
Обратное распространение через функцию softmax можно вычислить как:
∂yˆtk / ∂qtl = −yˆtk yˆtl, k /= l
 yˆtk(1 − yˆtk), k = l. (6.10)

Если мы объединим (6.9) и (6.10), мы получим сумму по всем значениям k, чтобы получить ∂Et / ∂qtl:
−ytl/yˆtl yˆtl (1 − yˆtl) + ∑k /= l(−ytk/yˆtk) (−yˆtk yˆtl) = −ytl + ytlyˆtl +
∑k /= lytk ​​yˆtl (6.11a)
= −ytl + yˆtl ∑k ytk. (6.11b)
Напомним, что все yt являются горячими векторами, что означает, что все значения в векторе равны нулю, за исключением одного, указывающего на класс. Таким образом, сумма равна 1, поэтому
∂Et/∂qtl = yˆtl −ytl (6.12)
Наконец, qt = Vht, поэтому qtl = Vl,m htm. Следовательно,
∂qtl/∂Vi, j = ∂/∂Vi, j(Vl,m htm) (6.13a)
= δilδjm htm (6.13б)
= δil htj. (6.13c)
Теперь комбинируя (6.12) и (6.13c), получаем:
∂Et/∂Vi, j = (yˆti −yti) htj, (6.14)
который узнаваем как внешний продукт. Следовательно,
∂Et/∂V = (yˆt −yt) ⊗ ht, (6.15)
где ⊗ - внешнее произведение.
6.3.1.2. Рекуррентные веса (W)
Параметр W появляется в аргументе для ht, поэтому нам нужно будет проверить градиент как в ht, так и в yˆt. Следует также отметить, что yˆt зависит от W как прямо, так и косвенно (через ht−1). Пусть zt = Uxt + Wht−1. Тогда ht = tanh (zt).
Сначала кажется, что по цепному правилу мы имеем:
∂Et/∂Wi, j = ∂Et/∂ yˆtk ∂yˆtk/∂qtl ∂qtl/∂htm ∂htm/∂Wi, j (6.16)
Обратите внимание, что из этих четырех членов мы уже вычислили первые два, а третий - это просто:
∂qtl/∂htm = ∂/∂htm(Vl,b htb) (6.17a)
= Vl,b δb,m (6.17b)
= Vl, m (6.17c)
Последний член, однако, требует неявной зависимости ht от Wi, j через ht−1, а также прямой зависимости. Следовательно, мы имеем:
∂htm/∂Wi, j → ∂htm/∂Wi, j + ∂htm/∂ht−1n ∂ht−1n/∂Wi, j. (6.18)
Но мы можем просто применить это снова, чтобы вывести:
∂htm/∂Wi, j → ∂htm/∂Wi, j + ∂htm/∂ht−1n ∂ht−1n/∂Wi, j +
∂htm/∂ht−1n ∂ht−1n /∂ht−2p ∂ht−2p/∂Wi, j. (6.19)
Этот процесс продолжается до тех пор, пока мы не достигнем h(−1), который был инициализирован вектором нулей (0). Обратите внимание, что последний член в (6.19) схлопывается до ∂htm/∂ht−2n ∂ht−2n/∂Wi, j и мы можем превратить первый член в ∂htm/∂htn ∂htn/∂Wi, j. Тогда мы приходим к компактной форме:
∂htm/∂Wi, j = ∂htm/∂hrn ∂hrn/∂Wi, j, (6.20)
где мы суммируем все значения r меньше t в дополнение к стандартному фиктивному индексу n. Более ясно, это записывается как:
∂htm/∂Wi, j = ∑tr = 0∂htm/∂hrn ∂hrn/∂Wi, j. (6.21)
Этот член отвечает за проблему исчезающего/увеличивающегося градиента: градиент экспоненциально уменьшается до 0 (исчезает) или экспоненциально увеличивается (взрывается). Умножение члена ∂htm / ∂hrn на член ∂hrn / ∂Wi, j означает, что произведение будет меньше, если оба члена меньше 1, или больше, если члены больше 1.
Мы рассмотрим эту проблему более подробно в ближайшее время.
Сочетание всех этих результатов:
∂Et/∂Wi, j = (yˆtl −ytl) Vl,m∑ tr = 0∂htm/∂hrn ∂hrn/∂Wi, j. (6.22)
6.3.1.3. Входные веса (U)
Взятие градиента U аналогично тому, как это делается для W, поскольку они оба требуют получения последовательных производных вектора ht. У нас есть:
∂Et/∂Ui, j = ∂Et/∂yˆtk ∂yˆtk/∂qtl ∂qtl/∂htm ∂htm/∂Ui, j. (6.23)
Обратите внимание, что сейчас нам нужно только вычислить последний член. Следуя той же процедуре, что и для W, мы находим, что:
∂htm/∂Ui, j = ∑tг = 0 ∂htm/∂hrn ∂hrn/∂Ui, j, (6.24)
и таким образом мы имеем:
∂Et/∂Ui, j = (yˆtl −ytl)Vtm ∑tг = 0 ∂htm/∂hrn ∂hrn/∂Ui,j. (6.25)
Разница между U и W проявляется в реальной реализации, поскольку значения ∂hrn/∂Ui,j и ∂hrn/∂Wi,j различаются.
6.3.1.4. Агрегированный градиент
Ошибка для всех временных шагов представляет собой сумму Et в соответствии с нашей функцией потерь (6.6). Следовательно, мы можем суммировать градиенты для каждого из весов в нашей сети (U, V и W) и затем обновить накопленные градиенты.
6.3.2. Проблема исчезающего градиента и регуляризация
Одной из самых сложных частей обучения RNN является проблема исчезающего/увеличивающегося градиента (часто называемая просто проблемой исчезающего градиента) .4) Во время обратного распространения градиенты умножаются на весовой вклад в ошибку на каждом временном шаге, показано в уравнении (6.21). Влияние этого умножения на каждый временной шаг резко уменьшает или увеличивает градиент, распространяющийся на предыдущий временной шаг, который, в свою очередь, снова умножается. Повторяющееся умножение на этапе обратного распространения ошибки вызывает экспоненциальный эффект для любой нерегулярности.
· Если веса маленькие, градиенты будут уменьшаться экспоненциально.
· Если веса большие, градиенты будут расти экспоненциально.
В случае, когда вклад очень мал, обновление веса может быть незначительным изменением, что потенциально может привести к прекращению обучения сети. На практике это обычно приводит к ошибкам переполнения или переполнения, если их не учитывать. Один из способов решить эту проблему - использовать производные второго порядка для прогнозирования наличия исчезающих / расширяющихся градиентов с помощью методов оптимизации без гессиана. Другой подход - тщательно инициализировать веса сети. Однако даже при тщательной инициализации все еще может быть сложно иметь дело с зависимостями на больших расстояниях.

4) Функция активации tanh ограничивает градиент между 0 и 1. Это приводит к уменьшению градиента в этих обстоятельствах.

Обычная инициализация для RNN - это инициализация начального скрытого состояния равным 0. Производительность обычно можно улучшить, разрешив изучение этого скрытого состояния [KB14].
Методы адаптивной скорости обучения, такие как Adam [KB14], могут быть полезны в повторяющихся сетях, поскольку они учитывают динамику индивидуальных весов, которые могут значительно различаться в RNN.
Существует множество методов, используемых для борьбы с проблемой исчезающего градиента, многие из них сосредоточены на тщательной инициализации или контроле размера распространяемого градиента. Наиболее часто используемый метод борьбы с исчезающими градиентами - это добавление вентилей к RNN. В следующем разделе мы подробнее остановимся на этом подходе. Последовательности РНС могут быть очень длинными. Например, если RNN используется для выборок распознавания речи, окна в 20 мс с шагом 10 мс создадут длину выходной последовательности 999 временных шагов для 10-секундного клипа (при условии отсутствия заполнения). Таким образом, градиенты могут очень легко исчезнуть / взорваться [BSF94b].
6.3.2.1. Долговременная кратковременная память
[image:]
Рис. 6.5: Схема ячейки LSTM
Долгая кратковременная память (LSTM) использует ворота для управления распространением градиента в рекуррентной сетевой памяти [HS97b]. Эти ворота (называемые воротами входа, выхода и забвения) используются для защиты ячейки памяти, которая переносит скрытое состояние на следующий временной шаг. Механизмы стробирования сами по себе являются слоями нейронной сети. Это позволяет сети узнать условия, при которых следует забыть, проигнорировать или сохранить информацию в ячейке памяти. На рисунке 6.5 показана схема LSTM.
Ячейка LSTM формально определяется как:
ir = σ (Wixt + Uiht−1 + bi)
ft = σ (Wf xt + Uf ht−1 + bf)
ot = σ (Woxt + Uoht−1 + bo)
c˜t = tanh (Wcxt + Ucht−1)
ct = ft ◦ ct−1 + it ◦ c˜t
ht = ot ◦ tanh (ct) (6.26)

Ворота забывания контролируют, сколько запоминается от шага к шагу. Некоторые рекомендуют инициализировать смещение логического элемента забывания равным 1, чтобы он запомнил больше изначально [Haf17].
6.3.2.2. Стробируемый рекуррентный блок
[image:]
Рис. 6.6: Схема GRU
Стробируемый рекуррентный блок (GRU) - еще одна популярная стробирующая структура для RNN [Cho + 14]. GRU объединяет шлюзы в LSTM для создания более простого правила обновления с одним менее изученным уровнем, снижая сложность и повышая эффективность.
Выбор между использованием LSTM или GRU в значительной степени решается эмпирически. Несмотря на ряд попыток сравнить два метода, обобщающего вывода сделано не было [Chu + 14]. GRU использует меньше параметров, поэтому его обычно выбирают, когда производительность одинакова между архитектурами LSTM и GRU. ГРУ показано на рис. 7.6. Уравнения для правил обновления показаны ниже:
zt = σ (Wzxt + Uzht−1)
rt = σ (Wrxt + Urht−1)
h˜t = tanh (Whxt + Uhht−1 ◦ rt)
ht = (1 − zt) ◦ h˜t + zt ∗ ht−1 (6.27)

В GRU новое состояние кандидата, h˜t, объединяется с предыдущим состоянием, причем zt определяет, какая часть истории переносится вперед или насколько новый кандидат заменяет историю. Подобно установке смещения затвора забывания LSTM для улучшения памяти на ранних этапах, смещения затвора сброса GRU можно установить на -1 для достижения аналогичного эффекта [Haf17].
6.3.2.3. Градиентное отсечение
Простой способ ограничить взрыв градиента - установить градиенты в определенном диапазоне.
Ограничение диапазона градиента может решить ряд проблем, в частности предотвратить ошибки переполнения при обучении. Обычно рекомендуется отслеживать норму градиента, чтобы понять ее характеристики, а затем уменьшать градиент, когда он превышает нормальный рабочий диапазон. Эта концепция обычно называется пингом градиентной обрезки.
Два наиболее распространенных способа обрезки градиентов:
· Ограничение нормы L2 с порогом t.
∇new = ∇current ◦ t/L2 (∇) (6.28)
· Фиксированный диапазон
∇new = tmin, если ∇ < tmin
 ∇tmax, если ∇ > tmax (6.29)

С максимальным порогом tmax и минимальным порогом tmin.
6.3.2.4. Длина последовательности BPTT
Вычисления, участвующие в периодическом обучении сети, сильно зависят от количества временных шагов во входных данных. Один из способов исправить / ограничить объем вычислений в процессе обучения - установить максимальную длину последовательности для процедуры обучения.
Распространенные способы установки длины последовательности:
· Увеличивайте тренировочные данные до максимальной желаемой длины
· Сократите количество шагов с обратным распространением во время тренировки.
На ранних этапах обучения перекрывающиеся последовательности с усеченным обратным распространением могут помочь сети быстрее сойтись. Увеличение длины усечения по мере обучения также может помочь сходимости на ранних этапах обучения, особенно для сложных последовательностей, или, когда максимальная длина последовательности в наборе данных довольно велика.
Установка максимальной длины последовательности может быть полезна в различных ситуациях. В частности, когда:
· статический вычислительный граф требует ввода фиксированного размера,
· модель ограничена памятью, или
· градиенты очень большие в начале обучения.

6.3.2.5. Повторяющееся выпадение
Рекуррентные сети, как и другие сети глубокого обучения, склонны к переобучению.
Отсев, являющийся распространенной техникой регуляризации, также интуитивно понятен и применим и к RNN, однако исходная форма должна быть изменена. Если исходная форма исключения применяется на каждом шаге, то комбинация масок может вызвать передачу небольшого сигнала по более длинным последовательностям. Вместо этого мы можем повторно использовать одну и ту же маску на каждом шаге [SSB16], чтобы предотвратить потерю информации между временными шагами.
Дополнительные методы, такие как вариационное отключение [GG16] и зональное отключение [Kru + 16], имеют схожие цели, отбрасывая входные или выходные шлюзы в LSTM или GRU.
6.4. Глубокие архитектуры RNN
Как и во всей области глубокого обучения, многие архитектуры и методы являются областью активных исследований. В этом разделе мы описываем несколько архитектурных вариантов, чтобы проиллюстрировать выразительную мощь и расширения основных концепций RNN, которые были введены до сих пор.
6.4.1. Глубокие RNN
Так же, как мы сложили несколько полностью связанных и сверточных слоев, мы можем также сложить слои повторяющихся сетей [EHB96]. Скрытое состояние в многослойной RNN, состоящей из l ванильных слоев RNN, может быть определено следующим образом:
h(l)t = f(W[h(l)t−1; h(l−1)t]) (6.30)
где h(l−1) t - результат предыдущего слоя RNN в момент времени t. Это показано на рис. 6.7. Как ни странно, когда сверточные слои складывались, сеть изучала иерархию пространственно коррелированных функций. Точно так же, когда повторяющиеся сети складываются в стек, это позволяет изучать более длинные диапазоны зависимостей и более сложные последовательности [Pas + 13].
Поскольку веса в RNN имеют квадратичный размер, также может быть более эффективным иметь несколько слоев меньшего размера, а не более крупных. Еще одним преимуществом является вычислительная оптимизация для слитых слоев RNN [AKB16].
Однако распространенной проблемой при наложении RNN является проблема исчезающего градиента из-за глубины и количества временных шагов. Однако RNN смогли черпать вдохновение из других областей глубокого обучения, включая остаточные соединения и сети магистралей, характерные для глубоких сверточных сетей.
[image:]
Рис. 6.7: Схема многослойной РНС с l = 2
6.4.2. Остаточный LSTM
В Prakash et al. [Pra + 16], авторы использовали остаточные связи между уровнями LSTM, чтобы обеспечить более сильный градиент к нижним уровням с целью генерации парафраз. Остаточные уровни, обычно применяемые в сверточных сетях, позволяют передавать «остатки» информации нижнего уровня на более поздние уровни сети.
Это обеспечивает информацию более низкого уровня на более высокие уровни, а также позволяет передавать больший градиент на более ранние уровни, поскольку существует более прямая связь с выходом. В Kim et al. [KEL17] авторы использовали остаточные связи для повышения частоты ошибок в словах в сети глубокой речи и пришли к выводу, что отсутствие накопления на пути шоссе, при использовании матрицы проекции для масштабирования вывода LSTM.
В определении LSTM в формуле (7.26) ht изменяется на:
ht = ot · (Wp · tanh (ct) + Whxt) (6.31)
где Wp - матрица проекции, а Wh - единичная матрица, которая соответствует размерам от xt до ht. Когда размеры xt и ht совпадают, это уравнение принимает следующий вид:
ht = ot · (Wp · tanh (ct) + xt). (6.32)
Обратите внимание, что выходной вентиль применяется после добавления входного xt.
6.4.3. Рекуррентные сети автомагистралей
Рекуррентные магистральные сети (RHN) [Zil + 16] предлагают подход к ограничению распространения градиента между повторяющимися уровнями в многоуровневых архитектурах RNN. Авторы представляют расширение архитектуры LSTM, которое позволяет объединять стекированные соединения для глубоких RNN.
[image:]
Рис. 6.8: Двухслойный остаточный LSTM
Для RHN с L слоями и выходом s (L) сети описываются как:
s(l) t = h(l) t · t(l) t + s(l − 1) t · c(l)t
h(l)t = tanh (WHxt1{l = 1} + RHls(l – 1)t + bHl)
t(l) t = σ (WT xt1{l = 1} + RTls(l − 1)t + bTl)
c(l)t = σ (WCxt1{l = 1} + RCls(l − 1)t + bCl) (6.33)

где 1 обозначает функцию индикатора.
Ряд полезных свойств получен от RHN, в частности, что собственное значение Якоби регулируется по временным шагам, что способствует более стабильному обучению. Авторы сообщили о впечатляющих результатах решения задачи языкового моделирования с использованием 10-слойной RHN.
6.4.4. Двунаправленные RNN
До сих пор мы рассматривали только накопление контекста памяти в прямом направлении. Во многих ситуациях желательно знать, что встретится на будущих временных шагах, чтобы дать предсказание в момент времени t. Двунаправленные RNN [SP97] позволяют включать в прогноз как прямой, так и «обратный» контекст. Это достигается запуском двух RNN в последовательности, одна в прямом направлении, а другая - в обратном. Для входной последовательности X = {x1, x2, ..., xT} прямой контекст RNN принимает входные данные в прямом порядке t = {1,2, ..., T}, а обратный контекст RNN принимает входные данные. в обратном порядке t = {T, T - 1, ..., 1}. Эти две RNN вместе составляют единый двунаправленный уровень. На рисунке 7.10 показана схема двунаправленной RNN.
[image:]
Рис. 6.9: Схема двухуровневой магистрали LSTM. Не то, чтобы при подключении к автомагистрали используются заученные ворота на пути к следующему уровню.
[image:]
Рис. 6.10: Схема двунаправленной RNN. Здесь выходы объединяются, чтобы сформировать единый выходной вектор, содержащий прямой и обратный контекст.
Выходные данные двух RNN, hf и hr, часто объединяются для формирования единого выходного вектора либо путем суммирования двух векторов, конкатенации, усреднения или другого метода.
В НЛП этот тип структуры может использоваться по-разному. Например, это оказалось очень полезным для задачи классификации фонем в распознавании речи, когда знание будущего контекста может лучше информировать прогнозы на любом временном шаге. Двунаправленные сети обычно превосходят RNN с прямым доступом в большинстве задач. Кроме того, этот подход можно распространить на другие формы рекуррентных сетей, такие как двунаправленные LSTM (BiLSTM). Эти методы следуют логически: одна сеть LSTM работает над входами в прямом направлении, а другая - с входами в обратном направлении, комбинируя выходы (конкатенация, сложение или другой метод).
Одним из ограничений двунаправленных RNN является то, что перед предсказанием должна быть известна полная входная последовательность, потому что обратная RNN требует xT для первого вычисления.
Таким образом, двунаправленные RNN нельзя использовать для приложений реального времени. Однако, в зависимости от требований приложения, наличие фиксированного буфера для ввода может смягчить это ограничение.
6.4.5. SRU и квази-RNN
Повторяющиеся соединения ограничивают объем вычислений, которые могут быть распараллелены, потому что информация должна обрабатываться последовательно. Таким образом, вычислительная стоимость RNN высока по сравнению с CNN. Введены две техники для ускорения вычислений необходимо устранить некоторые последовательные зависимости.
Эти методы позволяют сети становиться намного глубже при меньших вычислительных затратах. Первый метод представляет собой полупериодический блок (semi-recurrent unit - SRU) [LZA17].
Подход обрабатывает входные данные одновременно на каждом временном шаге, а затем применяет легкие повторяющиеся вычисления. SRU включает пропускные и высокоскоростные соединения для улучшения распространения функций в сети. SRU определяется как:
x˜t = Wxt
ft = σ (Wf xt + bf)
rt = σ (Wrxtbr)
ct = ft ◦ ct−1 + (1 − ft) ◦ x˜t
ht = rt ◦ g(ct) + (1 − rt) ◦ xt (6.34)

где f - вентиль забывания, r - вентиль сброса, а c - ячейка памяти.
Этот подход был применен к классификации текста, ответам на вопросы, языковому моделированию, машинному переводу и распознаванию речи, в результате чего были получены конкурентные результаты с сокращением времени обучения до 10 раз по сравнению с аналогом LSTM.
Квазипериодическая нейронная сеть (quasi-recurrent neural network - QRNN) [Bra + 16] - это другой подход с той же целью. QRNN применяет сверточные слои для распараллеливания входных вычислений, которые передаются сокращенному рекуррентному компоненту. Эта сеть была применена к задаче анализа настроений, а также позволила достичь конкурентных результатов со значительным сокращением времени обучения и прогнозирования.
6.4.6. Рекурсивные нейронные сети
Рекурсивные нейронные сети (Recursive neural networks - RecNN) - это обобщенная форма рекуррентных нейронных сетей, которые позволяют эффективно манипулировать графическими структурами. Рекурсивная нейронная сеть может изучать информацию, относящуюся к помеченным направленным ациклическим графам, в то время как современные сети обрабатывают только упорядоченные последовательности [GK96]. В NLP основным приложением для рекурсивных нейронных сетей является анализ зависимостей [SMN10] и изучение морфологических векторов слов [LSM13b].
Данные структурированы в виде дерева с родительскими узлами наверху и дочерними узлами, происходящими от них. Цель состоит в том, чтобы изучить соответствующую графическую структуру данных путем прогнозирования дерева и уменьшения ошибки по отношению к целевой древовидной структуре.
[image:]
Рис. 6.11: Схема рекурсивной нейронной сети
Для простоты мы рассматриваем фактор ветвления, равный 2 (по 2 дочерних элемента на каждого родителя).
Прогнозирование структуры, рекурсивная нейронная сеть стремится достичь двух результатов:
· Семантическое векторное представление p (xi, xj), объединяющее дочерние узлы ci и cj
· Оценка s, показывающая, насколько вероятно, что дочерние узлы будут объединены.
Сеть можно описать следующим образом:
sij = Up˙ (ci, cj)
p (ci, cj) = f (W [ci; cj] + b) (6.35)

где W - весовая матрица для общего уровня, а U - весовая матрица для вычисления оценки.
Оценка дерева - это сумма оценок в каждом узле:
S = ∑n∈nodes sn (7.36)
Вычисление ошибок для рекурсивных нейронных сетей использует синтаксический анализ максимального запаса:
E = ∑i s(xi, yi) - maxy∈A(xi) (s (xi, y) + Δ (y, yi)) (6.37)
Величина Δ (y, yi) вычисляет потери для всех неверных решений.
Обратное распространение через структуру (BPTS), аналогичное BPTT, вычисляет производные в каждом узле графа. Производные разделяются на каждом узле и передаются дочерним узлам. В дополнение к градиенту относительно предсказанного узла мы также вычисляем градиент относительно значений оценки.
Модули LSTM и GRU также применялись в рекурсивных сетях для борьбы с проблемой исчезающего градиента [TSM15]. Рекурсивные сети использовались в таких областях, как классификация отношений [Soc + 12], анализ тональности [Soc + 13] и сходство фраз [TSM15].
Рекурсивные нейронные сети демонстрируют мощные расширения нейронных архитектур на основе последовательностей. Хотя популярность их использования снизилась с появлением архитектур, основанных на внимании, концепции, которые они представляют для повышения вычислительной эффективности, полезны.
6.5. Расширения рекуррентных сетей
Рекуррентные нейронные сети могут использоваться для решения многих типов задач последовательности. До сих пор мы сосредоточились на примере «многие ко многим» с сопоставлением «один к одному» от входа к выходу с тем же количеством временных шагов. Однако RNN могут использоваться для многих типов задач, ориентированных на последовательность, путем изменения места вычисления ошибки. На рисунке 6.12 показаны типы проблем последовательности, которые могут быть решены с помощью RNN.
[image:]
Рис. 6.12: Рекуррентные нейронные сети могут решать множество задач, основанных на последовательностях. (a) показывает взаимно-однозначную последовательность (это было бы эквивалентно глубоким нейронным сетям с общими весами). (b) иллюстрирует задачу последовательности «один ко многим», генерирующую серию выходных данных для одного входа. (c) - это задача "многие к одному", которая может представлять задачу классификации текста, предсказывая единственную классификацию после просмотра всего текста. (d) показывает задачу последовательности «многие ко многим» с взаимно однозначным выравниванием между количеством временных шагов ввода и вывода. Эта структура обычна в языковом моделировании. (e) показывает «многие ко многим» без определенного согласования между входом и выходом. Количество входов и выходов ступеней также может быть разной длины. Этот метод обычно называют последовательностью и часто встречается в нейронном машинном переводе.
RNN обладают огромной гибкостью и могут быть расширены для решения широкого круга задач последовательности. Ограничения нейронных сетей с прямой связью остаются: тенденция к переобучению без надлежащей регуляризации, потребность в больших наборах данных и вычислительные требования. Кроме того, модели последовательностей вводят другие соображения, такие как исчезающие градиенты с большей длиной последовательности и «забвение» более раннего контекста. Эти трудности привели к появлению различных расширений, передовых методов и методов решения этих проблем.
6.5.1. От последовательности к последовательности
Многие задачи НЛП и речи ориентированы на последовательность. Один из наиболее распространенных архитектурных подходов к этим задачам - последовательность-последовательность, часто сокращенно seq-to-seq или seq2seq. Подход seq-to-seq напоминает автоэнкодер, имеющий рекуррентный кодировщик и рекуррентный декодер, показанные на рис. 6.13. Конечное скрытое состояние кодера, функционирующего как «кодирование», переданное декодеру; однако обычно он обучается под наблюдением с определенной выходной последовательностью. Подход seq-to seq родился из нейронного машинного перевода, когда входное предложение было на одном языке, а соответствующее выходное предложение - на другом языке. Цель состоит в том, чтобы суммировать ввод с помощью кодировщика и декодировать в новый домен с помощью декодера.
[image:]
Рис. 6.13: Модель Seq-to-seq с кодером и декодером на основе RNN. Первое скрытое состояние декодера - это последнее скрытое состояние кодировщика (показано желтым цветом).
Одна из трудностей этого подхода заключается в том, что скрытое состояние имеет тенденцию отражать самую последнюю информацию, теряя память о более раннем содержании. Это вызывает ограничение для длинных последовательностей, когда вся информация об этой последовательности должна быть сведена в единое кодирование.
6.5.2. Внимание
Принуждение к единому вектору суммировать всю информацию из предыдущих временных шагов является недостатком. В большинстве приложений информация из сгенерированной последовательности из декодера будет иметь некоторую корреляцию с входной последовательностью. Например, в машинном переводе начало выходного предложения, вероятно, зависит от начала входного предложения и в меньшей степени от конца предложения, которое было замечено совсем недавно. Во многих ситуациях было бы полезно иметь не только обобщенные знания, но и способность сосредоточиться на различных частях входных данных, чтобы лучше информировать выходные данные на определенном временном шаге.
Внимание [BCB14a] было одним из самых популярных методов решения этой проблемы, уделяя особое внимание частям последовательности для каждого слова в выходной последовательности. Это не только позволяет нам улучшить качество наших прогнозов, но и позволяет лучше понять сеть, просмотрев, какие входные данные использовались при прогнозировании.
Если si - это скрытое состояние с усиленным вниманием в момент времени i, оно принимает три входа:
· предыдущее скрытое состояние декодера si−1,
· прогноз из предыдущего временного шага yi−1, и
· вектор контекста ci, который взвешивает соответствующие скрытые состояния для данного временного шага.
si = f (si−1, si, ci) (6.38)
Вектор контекста ci определяется как:
max − marginparsingi = ∑Txj = 1αijhj. (6.39)
где веса внимания:
αij = ехр (eij) / ∑Txk = 1 ехр (eik) (6.40)
а также
eij = a(si−1, hj). (6.41)
Функция a (s, h) называется моделью выравнивания. Эта функция оценивает, насколько важным должен быть вход hj на выходе в позиции i.
Он полностью дифференцируемый и детерминированный, поскольку учитывает все временные шаги, которые повлияли на результат. Недостатком использования всех предыдущих временных шагов является то, что для длинных последовательностей требуется большой объем вычислений. Другие методы ослабляют эту зависимость, выбирая количество состояний, которые информируют вектор контекста. Однако это создает недифференцируемые потери, и для обучения требуется выборка методом Монте-Карло для оценки градиента во время обратного распространения ошибки.
Дополнительным преимуществом внимания является то, что он дает оценку для каждого временного шага, определяя, какие входные данные были наиболее полезными для прогноза. Это может быть очень полезно для интерпретируемости при проверке качества сети или получения интуитивного представления о том, что модель изучает, как показано на рис. 6.15. Механизмы внимания более подробно описаны в гл. 10.
[image:]
Рис. 6.14: Внимание уделено первому этапу декодирования модели нейронного машинного перевода. Оценка подобия вычисляется для скрытого состояния на каждом временном шаге в кодере и для текущего скрытого состояния декодера. Эти оценки используются для взвешивания вклада этого временного шага. Эти веса используются для создания вектора контекста, который передается в декодер.
6.5.3. Сети указателей
Сети указателей [VFJ15] представляют собой приложение основанных на внимании моделей последовательностей. В отличие от других моделей, основанных на внимании, он выбирает слова (точки), которые будут использоваться в качестве выходных данных, вместо того, чтобы накапливать входную последовательность в векторе контекста. Выходной словарь в этом сценарии должен расти вместе с длиной входной последовательности. Чтобы приспособиться к этому, в качестве указателя используется механизм внимания, а не смешивание информации для декодирования.
uij = vT tanh (W1ej + W2di)
p(Ci | C1, ..., Ci−1, P) = softmax (ui) (6.42)

где ej - выходной сигнал кодировщика в момент времени j ∈ {1, ..., n}, di - выходной сигнал декодера на временном шаге i, а Ci - индекс в момент времени i, а v, W1 и W2 - параметры, которые можно изучить.
[image:]
Рис. 6.15: Веса внимания в задаче машинного перевода с английского на французский. Нет никаких сомнений в том, как обслуживаемая область сети соотносится с выходной последовательностью.
Эта модель показала успех в поиске плоских выпуклых оболочек при вычислении Делоне триангуляции и поиске решений проблемы коммивояжера.
6.5.4. Трансформаторные (преобразующие) сети
Успех внимания к задачам seq-to-seq наводит на вопрос, можно ли его напрямую применить к входу, уменьшая или даже устраняя необходимость в повторяющихся соединениях в сети. Трансформаторные сети [Vas + 17b] применили это внимание непосредственно к входным данным с большим успехом, превзойдя как рекуррентные, так и сверточные модели в машинном переводе. Вместо того, чтобы полагаться на RNN для накопления памяти о предыдущих состояниях, как в моделях от последовательности к последовательности, преобразователь использует «многостороннее» внимание непосредственно на входных вложениях. Это уменьшает последовательные зависимости сети, позволяя выполнять большую часть вычислений параллельно.
Внимание уделяется непосредственно входной последовательности, а также выходной последовательности, как она прогнозируется. Части кодера и декодера объединяются с использованием другого механизма внимания перед предсказанием распределения вероятностей по выходному словарю.
Многоголовое внимание, показанное на рис. 6.16, определяется тремя входными матрицами: Q набор запросов, упакованных в матрицу, ключи K и значения V.
Attention(Q, K, V) = softmax (QKT/√dk)V (6.43)
Тогда внимание нескольких голов определяется как:
MultiHead (Q, K, V) = Concat (head1, ..., headh) WO (6.44)
где
headi (Q, K, V) = Attention(QWQi, KWKi, VVQi). (6.45)
Параметры всех матриц W являются проекционными матрицами
[image:]
Рис. 6.16: Иллюстрация масштабированного скалярного произведения внимания, называемого в тексте вниманием, и многоголовым вниманием. (а) внимание масштабированного скалярного произведения, (б) внимание нескольких голов
Кодер и декодер применяют несколько уровней внимания с несколькими головами с остаточными связями и дополнительными полносвязными уровнями. Поскольку большая часть вычислений выполняется параллельно, используются метод маскирования и смещение, чтобы гарантировать, что сеть использует только информацию, доступную до момента времени t - 1, при прогнозировании на время t. Трансформаторная сеть сокращает количество шагов, необходимых для прогнозирования, что значительно сокращает время вычислений, обеспечивая при этом самые современные результаты в задаче перевода.
6.6. Применение RNN в NLP
Включение текста в повторяющиеся сети - простой процесс, напоминающий классификацию RNN в предыдущей главе. Слова предложения преобразуются во вложения слов и передаются в нашу сеть в виде временных рядов. В этом случае нам не нужно беспокоиться о минимальной длине нашей последовательности, потому что контекст слова изучается в памяти RNN, а не как комбинация входных данных.
В Инь и др. [Yin + 17], авторы проводят широкое сравнение архитектур RNN для множества задач НЛП, таких как классификация текста, следование, выбор ответа и теги POS. В этой работе авторы обучают базовым архитектурам CNN и RNN, показывая, что RNN хорошо справляются с большинством задач, причем CNN оказываются превосходными только в определенных случаях сопоставления, когда основными функциями являются, по сути, ключевые фразы. В целом, CNN и RNN используют разные методы моделирования предложений.
CNN имеют тенденцию изучать функции, аналогичные n-граммам, в то время как RNN стремятся поддерживать дальнодействующие зависимости для определения контекста.
6.6.1. Классификация текста
На рис. 6.17 показана структура простой задачи классификации текста для входящего предложения. С помощью повторяющейся сети мы можем последовательно кодировать слово embeddings на каждом временном шаге. После того, как вся последовательность закодирована, мы используем последнее скрытое состояние для прогнозирования класса. Сеть обучается с помощью BPTT и учится последовательно взвешивать слова для задачи классификации.
В работе Lee and Dernoncourt [LD16] авторы сравнили архитектуры CNN и RNN для классификации коротких текстов. Добавление последовательной информации через архитектуры CNN и RNN значительно улучшило результаты характеризации диалоговых действий.
[image:]
Рис. 6.17: Простой текстовый классификатор на основе RNN для классификации тональности
Что касается сентиментальной классификации, Wang et al. [Wan + 15b] закодировал твиты с использованием сети LSTM для прогнозирования настроений. В своей работе они продемонстрировали устойчивость RNN к улавливанию сложностей, содержащихся в структуре твитов, в частности, эффекта отрицательных фраз, например, когда слово не отменяет фразу. В Lowe et al. [Low + 15], авторы представили архитектуру под названием dual-LSTM для семантического соответствия. Эта архитектура кодирует вопросы и ответы и использует внутренний продукт вектора вопросов и ответов для ранжирования ответов кандидатов.
6.6.2. Тегирование части речи и распознавание именованных объектов
В Huang et al. [HXY15], функции слов и вложения были применены к задачам POS, NER и фрагментации с двунаправленным LSTM с CRF для повышения производительности. В Ma and Hovy [MH16] двунаправленный LSTM использовался для сквозной классификации POS на WSJ. Ма и Хови [MH16] использовали сквозной метод для улучшения этих результатов. Их метод не зависит от функций контекста, которые применялись в других работах, таких как POS, функции лексики и предварительная обработка, зависящая от задачи. В Lample et al. [Lam + 16b], двунаправленный LSTM использовался в сочетании с CRF для достижения современной производительности NER на четырех языках в наборе данных CoNLL 2003. Эта работа также расширила базовую архитектуру RNN-CRF на стек LSTM (блоки LSTM, используемые для имитации структуры данных стека с помощью выталкивания и возможности вытягивания). Встраивание символов часто включается в дополнение к вложенным словам слова em для сбора дополнительной информации о семантической структуре слова, а также для предсказания слов OOV.
6.6.3. Анализ зависимостей
В Dyer et al. [Dye + 15], стековые LSTM, которые позволяют выполнять операции выталкивания и вытягивания, использовались для прогнозирования синтаксического анализа зависимостей для текста переменной длины путем прогнозирования переходов дерева зависимостей. Кипервассер и Голдберг [KG16] упростили архитектуру, устранив необходимость в stack-LSTM, полагаясь на двунаправленные LSTM для прогнозирования переходов дерева зависимостей.
6.6.4. Тематическое моделирование и обобщение
В Ghosh et al. [Gho + 16], контекстный LSTM (C-LSTM) был представлен для предсказания слов, выбора предложений и предсказания темы. C-LSTM объединяет встраивание темы со словом встраивание на каждом временном шаге в обучении сети. Эта работа работает аналогично обучению языковой модели в том, что цель предсказать следующее слово; тем не менее, он расширен, чтобы включить в прогноз также контекст темы. Таким образом, цель состоит в том, чтобы предсказать следующее слово и тему предложения на данный момент.
6.6.5. Ответ на вопрос
В Tan et al. [Tan + 15], авторы тренируют RNN вопроса и RNN ответа, чтобы получить соответствующее вложение для каждого. Затем две сети обучаются одновременно с использованием целевого показателя потерь на шарнире, чтобы обеспечить косинусное сходство между двумя наиболее вероятными парами. Другой подход, сети динамической памяти [XMS16], включает в себя ряд компонентов, составляющих систему ответов на вопросы. Эта система использовала комбинацию повторяющихся сетей и механизмов внимания для создания модулей ввода, вопросов и ответов, которые используют эпизодическую память для определения предсказаний.
6.6.6. Мультимодальный
Эффективность глубокого обучения в других приложениях, таких как изображения и видео, привела к появлению множества мультимодальных приложений. Для этих приложений требуется общий язык на основе носителя ввода. Эти приложения включают субтитры к изображениям и видео, визуальные ответы на вопросы и визуальное распознавание речи.
Подписи к изображениям были одним из первых способов объединения глубоких сверточных сетей для изображений с текстом. В Vinyals et al. [Vin + 15b] авторы использовали предварительно обученную сверточную сеть для классификации изображений, чтобы сгенерировать вложение изображения для начального состояния сети LSTM. Сеть LSTM была обучена предсказывать каждое слово подписи. Первоначальный подход привел к прогрессу в архитектуре RNN [Wan + 16a].
Создание субтитров для видео продемонстрировало аналогичное развитие: [Ven + 14] использовал предварительно обученную модель CNN для извлечения характеристик изображения для каждого видеокадра, которые будут использоваться в качестве входных данных в повторяющейся сети для генерации текста. Pan et al. [Pan + 15a] расширил этот метод, перейдя по выходным кадрам более ранних рекуррентных слоев, чтобы создать «иерархический рекуррентный нейронный кодировщик», чтобы уменьшить количество временных шагов, учитываемых в выходном слое составной RNN.
В визуальных ответах на вопросы языковая генерация используется для генерации ответа на текстовый вопрос, связанный с визуальным вводом. Сквозной подход был продемонстрирован с сетью контроля качества нейронных изображений в Malinowski et al. [MRF15], где входное изображение и вопрос заставили сеть LSTM генерировать текстовый ответ.
6.6.7. Языковые модели
В предыдущих главах мы кратко обсуждали языковые модели. Напомним, что языковая модель позволяет определить вероятность последовательности слов.
Например, модель языка с n-граммами определяет вероятность последовательности слов P (w1, ..., wm), глядя на вероятность каждого слова с учетом его n предшествующих слов:
P (w1, ..., wm) ≈∏mi = 1 P (wi | wi−(n−1), ..., wi−1). (6.46)
Языковые модели особенно интересны в НЛП, поскольку они могут предоставить дополнительную контекстную информацию в ситуациях, когда предсказание может быть семантически похожим, но синтаксически отличаться. В случае распознавания речи два слова, которые звучат одинаково, например, «to» и «two», имеют разные значения. Но фраза «установить таймер на минуты» не имеет смысла, в то время как «установить таймер на две минуты» имеет смысл.
Языковые модели часто используются при создании языка и для основной адаптации (где могут быть большие объемы немаркированных текстовых данных и ограниченные маркированные данные). Концепция моделей языка n-граммов также может быть реализована с помощью RNN, которые выигрывают от отсутствия необходимости устанавливать жесткое ограничение для количества рассматриваемых граммов. Кроме того, подобно векторам слов, эти модели можно обучать неконтролируемым образом на большом массиве данных.
Языковая модель обучена предсказывать следующее слово в последовательности с учетом предыдущего контекста, то есть скрытого состояния. Это позволяет языковой модели нацеливать обучение:
P (w1, ..., wm) = ∏mi = 1P (wi | w1, ..., wi−1). (6.47)
Пример языковой модели на основе RNN показан на рис. 6.18.
[image:]
Рис. 6.18: Модель языка RNN, обученная предсказывать следующее слово в последовательности, учитывая всю историю последовательности. Обратите внимание, что каждый временной шаг ориентирован на классификацию, поэтому целевые выходные данные - это размер словаря, а не размер вложений входного слова.
В языковом моделировании хорошей практикой является наличие единой матрицы встраивания как для входной, так и для выходной последовательности, что позволяет совместно использовать параметры, уменьшая общее количество параметров, которые необходимо изучить. Кроме того, введение уровня «проекции вниз» для уменьшения состояния большой RNN обычно полезно, когда вывод содержит большое количество элементов. Этот слой проекции уменьшает размер окончательной линейной проекции, как это часто бывает в языковом моделировании [MDB17].
6.6.7.1. Недоумение
Недоумение - это мера того, насколько хорошо модель может представлять предметную область, о чем свидетельствует ее способность предсказывать выборку. Для языковых моделей недоумение может количественно определить способность языковой модели прогнозировать данные проверки или тестирования. Языковая модель работает хорошо, если она дает высокую вероятность предложения в тестовом наборе. Недоумение - это обратная вероятность, нормированная на количество слов.
Мы можем определить меру недоумения для тестового набора предложений (s1, ..., sm) с помощью:
PP (s1, ..., sm) = 2–1/M ∑mi = 1 log2 p (si) (6.48)
где M - размер словарного запаса тестового набора. Поскольку недоумение дает обратную вероятность набора данных, меньшее недоумение означает лучший результат.
6.6.7.2. Рекуррентный вариационный автоэнкодер
Рекуррентные вариационные автоэнкодеры (RVAE) являются расширением рекуррентных языковых моделей [KW13, RM15]. Цель RVAE - включить вариационный вывод в процесс обучения автоэнкодера для захвата глобальных характеристик в скрытых переменных. В Bowman et al. [Bow + 15], авторы использовали архитектуру VAE для генерации предложений из языковой модели.
6.6.8. Нейронный машинный перевод
Машинный перевод был одним из самых больших факторов успеха рекуррентных нейронных сетей. Традиционные подходы основывались на статистических моделях, которые были дорогостоящими в вычислительном отношении и требовали большого опыта в предметной области для их настройки. Машинный перевод естественным образом подходит для RNN, потому что входные предложения могут отличаться по длине и порядку от желаемых выходных. Ранние архитектуры для трансляции нейронных машин (NMT) основывались на архитектуре рекуррентного кодера-декодера. Очень простая иллюстрация этого показана на рис. 6.19.
NMT берет входную последовательность слов X = (x1, ..., xm) и отображает их в выходную последовательность Y = (y1, ..., yn). Обратите внимание, что n не обязательно совпадает с m. Используя пространство вложения, вход X отображается в векторное представление, которое используется рекуррентной сетью для кодирования последовательности. Затем декодер использует окончательное скрытое состояние RNN (закодированный ввод) для предсказания переведенной последовательности слов Y (некоторые также показали успех с переводом подслов [DN17]).

[image:]
Рис. 6.19: Схема архитектуры нейронной машины кодера-декодера одного скрытого уровня. Обратите внимание, как входные и выходные последовательности могут иметь разную длину и усекаются при достижении тега конца предложения (<EOS>).
Часто бывает полезно усилить последовательность, поскольку она предсказывается сетью декодера. Передача предсказанной выходной последовательности в качестве входных данных, как показано на рис. 6.20, может улучшить предсказания. Во время обучения истина может быть передана в качестве входных данных для следующего временного шага с некоторой частотой. Это называется «принуждением учителя», потому что при обучении используются истинные предсказания. Альтернативой является использование прогнозируемого выходного сигнала декодера, что может вызвать трудности с конвергенцией на ранних этапах обучения. Принуждение учителя постепенно прекращается по мере продолжения обучения, что позволяет модели изучить соответствующие зависимости. Запланированная выборка - это способ решения этой проблемы путем переключения между прогнозированием с целевыми показателями и выходом сети.
На практике кодер и декодер не должны быть более чем на 2–4 уровня, а двунаправленные кодеры обычно превосходят однонаправленные [Bri + 17].
6.6.8.1. BLEU
Самый распространенный показатель, используемый для оценки машинного перевода - BLEU. BLEU (bilingual evaluation understudy - дублер двуязычной оценки) - это метрика оценки качества машинного перевода, разработанная для согласования с человеческими оценками естественного языка. Это позволяет сравнить перевод с набором целевых переводов для оценки качества.
[image:]
Рис. 6.20: Архитектура нейронного машинного перевода кодер-декодер с одним скрытым слоем с предыдущим словом предсказания, используемым в качестве входных данных на следующем временном шаге. Обратите внимание, что в матрице встраивания есть записи для обоих языков.
Оценка ограничена от 0 до 1, причем более высокие значения указывают на лучшую производительность. Часто в литературе оценка умножается на 100, чтобы приблизиться к процентной корреляции. По своей сути оценка BLEU - это точное измерение. Он вычисляет точность для эталонных n-граммов в мишенях.
Идеальное совпадение будет выглядеть следующим образом:
1 from nltk . translate . bleu score import sentence bleu
2 targets = [[’ i ’ , ’had ’ , ’a ’ , ’cup ’ , ’of ’ , ’ black ’ , ’ coffee ’ , ’
at ’ , ’the ’ , ’cafe ’]]
3 p r e d i c t i o n = [’ what ’ , ’ are ’ , ’we ’ , ’ doing ’]
4 score = sentence bleu (targets , prediction) ∗ 100
5 print (score)
6
7 > 0

В качестве альтернативы, если в предсказании нет ссылочных слов, мы получаем оценку 0.
1 from nltk . translate . bleu score import sentence bleu
2 targets = [[’ i ’ , ’had ’ , ’a ’ , ’cup ’ , ’of ’ , ’ black ’ , ’ coffee ’ , ’
at ’ , ’the ’ , ’cafe ’]]
3 p r e d i c t i o n = [’ what ’ , ’ are ’ , ’we ’ , ’ doing ’]
4 score = sentence bleu (targets , prediction) ∗ 100
5 print (score)
6
7 > 0

Если мы изменим одно или два слова в расшифровке, то мы увидим падение оценки.
1 from nltk . translate . bleu score import sentence bleu
2 targets = [[’ i ’ , ’had ’ , ’a ’ , ’cup ’ , ’of ’ , ’ black ’ , ’ coffee ’ , ’
at ’ , ’the ’ , ’cafe ’]]
3 prediction = [’ i ’ , ’had ’ , ’a ’ , ’cup ’ , ’of ’ , ’ black ’ , ’ tea ’ , ’
at ’ , ’the ’ , ’cafe ’]
4 score = sentence bleu (targets , prediction) ∗ 100
5 print (score)
6
7 > 65.8037
8
9 targets = [[’ i ’ , ’had ’ , ’a ’ , ’cup ’ , ’of ’ , ’ black ’ , ’ coffee ’ , ’
at ’ , ’the ’ , ’cafe ’]]
10 prediction = [’ i ’ , ’had ’ , ’a ’ , ’cup ’ , ’of ’ , ’ black ’ , ’ tea ’ , ’
at ’ , ’the ’ , ’house ’]
11 score = sentence bleu (targets , prediction) ∗ 100
12 print (score)
13
14 > 58.1430

В этих примерах представлена ​​оценка BLEU-1; однако более высокие n-граммы будут давать лучший показатель качества. BLEU-4 обычно встречается в NMT, что дает корреляцию при рассмотрении 4-граммовой точности между гипотезой и целевым переводом.
6.6.9. Выходные данные для прогнозирования / выборки
Есть множество способов оценить результат работы языковой модели.
6.6.9.1. Жадный поиск
Если мы предсказываем наиболее вероятное слово на каждом шаге, мы не можем получить наилучшую вероятность последовательности для всех. Лучшее решение на ранней стадии процесса может не максимизировать общую вероятность последовательности. Фактически, существует дерево решений, которое необходимо декодировать для достижения наилучшего возможного результата. Из-за древовидной структуры выходных данных языковой модели существует множество методов их анализа.
6.6.9.2. Случайный отбор проб и отбор проб по температуре
Другой способ проанализировать выходные данные нашей модели - использовать случайный поиск. При случайном поиске следующее слово в предложении выбирается в соответствии с распределением вероятностей следующего состояния. Метод случайной выборки может помочь добиться разнообразия результатов. Однако иногда прогнозы для языковых моделей могут быть очень надежными, что делает выходные результаты похожими на жадные результаты поиска. Обычный способ улучшить разнообразие прогнозов - использовать концепцию, называемую температурой. Температура - это метод, который экспоненциально преобразует вероятности и перенормирует, чтобы перераспределить наивысшие вероятности среди высших классов.
Один из методов выборки из языковой модели - использовать «выборку температуры». Этот метод выбирает прогноз вывода, применяя функцию замораживания, определенную следующим образом:
fτ (p)i = p1/τi / ∑j p1/τj (6.49)
где τ ∈ [0,1] - параметр температуры, который определяет, насколько «теплые» прогнозы. Чем ниже температура, тем менее разнообразны результаты.
Еще одно желаемое качество НЛП - создание языков. В Sutskever et al. [SVL14b], архитектура кодера-декодера на основе глубокой RNN используется для генерации уникальных предложений. Сети кодируют «исходную» последовательность слов в «кодирование» фиксированной длины, вектор через RNN. Декодер использует «кодирование» в качестве начального скрытого состояния и выдает ответ.
6.6.9.3. Оптимизация вывода: декодирование поиска луча
Жадный поиск предполагает независимость каждого временного шага декодирования. Мы полагаемся на наши RNN, чтобы правильно информировать о зависимости между каждым временным шагом. Мы можем предоставить предварительные данные для наших прогнозов, чтобы избежать простых ошибок (таких как конъюгация). Мы можем сделать это, смещая наш прогноз на механизм подсчета очков, который сообщает, является ли конкретная последовательность более вероятной, чем другая.
При использовании нашей обученной модели для прогнозирования новых данных мы полагаемся на то, что модель дает правильный результат при наиболее надежном прогнозе. Однако во многих ситуациях желательно наложить априори на результат, смещая его в сторону определенной области. Например, при распознавании речи производительность акустической модели может быть значительно улучшена за счет включения языковой модели в качестве смещения для прогнозов выходных данных.
Например, результат, который мы получаем из нашей модели машинного перевода, представляет собой распределение вероятностей по словарю на каждом временном шаге, таким образом создавая дерево возможностей того, как мы могли бы проанализировать выходные данные.
Часто исследование всего дерева возможностей требует слишком больших вычислительных затрат, поэтому наиболее распространенным методом поиска является поиск по лучу. Поиск луча - это алгоритм поиска, который поддерживает фиксированный максимум количества возможных состояний в памяти. Это обеспечивает гибкий подход к оптимизации вывода сети после ее обучения, балансируя скорость и качество.
Если мы рассмотрим выходную последовательность нашей сети (y1, ..., ym), где yt - выход softmax по нашему словарю, то мы можем вычислить вероятность всей последовательности с произведением вероятностей на каждом временном шаге:
P (y1, ..., ym) = ∏mi=1 pi (yi) (6.50)
Мы можем расшифровать его, обусловив наш вывод вероятностью перехода от одного слова к другому.
Если у нас есть языковая модель, которая дает нам вероятность последовательности слов, мы можем использовать эту модель для смещения прогноза нашего вывода путем вычисления вероятности различных путей, которые могут быть пройдены через дерево возможных переходов.
Пусть y - последовательность слов, а P (y) - вероятность этой последовательности в соответствии с нашей языковой моделью. Мы будем использовать поиск луча, чтобы исследовать несколько гипотез последовательностей в момент времени t, Ht−1, с размером луча k.
Ht: = {(w11, ..., w1t), ..., (wk1, ..., wkt)},
H3: = {(чашка чая), (чашка кофе)}
С помощью поиска луча мы отслеживаем наши основные k гипотез и выбираем путь, который максимизирует P (y). Мы будем собирать вероятность каждой гипотезы P (ht) в Pt.
Порядок индексов Ht и Pt должен быть привязан, чтобы они оставались последовательными при сортировке.
Мы начинаем каждую гипотезу с токена <SOS> и заканчиваем гипотезу, как только будет достигнут токен <EOS>. Гипотеза с наивысшим баллом выбирается.
Алгоритм 1: поиск луча
Data: yˆ, beamWidth
Result: y with highest p(y)
begin
H0 = {(< SOS >)}
P0 = {0}
for t in 1 to T do
for h in Ht−1 do
for yˆ ∈ Y do
yˆ = (yh
1,..., yh
t−1, yˆ)
Ht+ = yˆ
Pt+ = P(yˆ)
Ht = sort(Ht) according to highest Pt
Ht = Ht [1,...,beamWidth]

6.7. Практический пример
Здесь мы применяем концепции рекуррентных нейронных сетей для нейронных машин перевода. В частности, с помощью задачи перевода с английского на французский исследуются базовые архитектуры RNN, LSTM, GRU и преобразователя последовательности в последовательность. Мы начинаем с исследовательского процесса создания набора данных для задачи. Далее мы исследуем последовательность архитектур, сравнение влияния различных гиперпараметров и архитектурных проектов на качество.
Набор данных, который мы используем, представляет собой большой набор предложений на английском языке с французским переводом с веб-сайта Tatoeba. Исходные данные представляют собой необработанный набор парных примеров без обозначенных разделений на train, val и test, поэтому мы создаем их в процессе EDA.
6.7.1. Программные инструменты и библиотеки
Популярность и разнообразие задач, которые можно решить с помощью последовательной модели, привели к появлению множества высокопроизводительных реализаций. В этом тематическом исследовании мы фокусируемся на репозитории Fairseq (-py) на основе PyTorch [Geh + 17a], созданном Facebook.
AI Research (FAIR). Эта библиотека содержит реализации многих распространенных шаблонов seq-to-seq с оптимизированными загрузчиками данных и пакетной поддержкой.
Кроме того, мы используем текстовый пакет PyTorch и spaCy [HM17] для выполнения EDA и подготовки данных. Эти пакеты предоставляют множество полезных функций для обработки текста и создания наборов данных, особенно с акцентом на загрузчики данных глубокого обучения (хотя мы не используем их здесь).
6.7.2. Исследовательский анализ данных
Исходный формат текста, содержащийся в наборе данных Tatoeba, представляет собой английское предложение, разделенное табуляцией, за которым следует французский перевод, по одной паре в строке. Подсчитав количество строк, мы получим 135 842 англо-французских пары. Выбрав несколько случайных выборок, как на рис. 6.21, мы можем увидеть, что он содержит знаки препинания, заглавные буквы, а также символы Unicode. Unicode не должен вызывать удивления при рассмотрении задачи перевода; однако это необходимо учитывать при работе с любым вычислительным представлением из-за различий в библиотеках и их поддержки символов Юникода.
[image:]
Рис. 6.21: Примеры из англо-французского набора данных
6.7.2.1. Фильтрация длины последовательности
Сначала мы проверяем длины последовательностей в наборе данных. Мы используем spaCy как для английской, так и для французской токенизации. Токенизаторы могут применяться с помощью полей torchtext при чтении данных, автоматически применяя токенизатор. Поля в torchtext - это общие типы данных для набора данных. В нашем примере есть два типа полей: исходное поле, представленное как «SRC», которое будет содержать подробную информацию о том, как английские предложения должны быть обработаны, в то время как второе поле, называемое «TRG», содержит целевые французские данные и их тип обработки. Мы можем прикрепить токенизатор к каждому следующим образом.
1 def tokenize fr (text):
2 ”””
3 Tokenizes French text from a string into a l i s t of strings
4 ”””
5 return [tok . text for tok i n spacy fr . tokenizer (text)]
6
7 def tokenize en (text) :
8 ”””
9 Tokenizes English text from a string into a l i s t of strings
10 ”””
11 return [tok . text for tok i n spacy en . tokenizer (text)]
12
13 SRC = F i e l d (t o k e n i z e = t o k e n i z e en , init token= ’<sos>’ ,
eos token= ’<eos>’ , lower=True)
14 TRG = F i e l d (t o k e n i z e = t o k e n i z e fr , init token= ’<sos>’ ,
eos token= ’<eos>’ , lower=True)
15
16 SRC . b u i l d vocab (train data , min freq =0)
17 TRG. b u i l d vocab (train data , min freq =0)

Torchtext может принимать токенизатор любого типа, так как это просто функция, которая работает с передаваемым текстом. Токенизаторы в spaCy полезны, поскольку у них есть стоп-слова, исключения токенов и различные типы обработки знаков препинания.
Еще одно соображение при обучении моделей на основе последовательностей - это длина примеров. Мы строим гистограмму длин последовательностей на рис. 6.22. Более длинные предложения, вероятно, будут иметь более сложную структуру и, вероятно, будут иметь зависимости более длинного диапазона. Мы не ожидаем изучить эти примеры, поскольку они недостаточно представлены в наборе данных. Если мы хотим научиться переводить более длинные предложения, нам придется собрать больше данных или разумно разбить длинные примеры на более короткие, где у нас больше данных. Кроме того, длинные примеры могут привести к проблемам с памятью при обучении мини-пакетом, поскольку размер пакета может быть больше при использовании более коротких примеров.
[image:]
Рис. 6.22: Гистограмма длин предложений для английского и французского языков. Обратите внимание, что большинство предложений короткие, а длинных предложений очень мало.
Для этого тематического исследования мы удаляем более длинные примеры, устанавливая порог длины наших примеров. Мы выбираем ограничение в 20 временных шагов для входной или выходной последовательности, что позволит использовать не более 18 фактических слов в последовательностях после включения токенов <sos> и <eos>. Это ограничение означает, что наша максимальная длина включает в себя все длины последовательностей, которые содержат важные данные. Полученное распределение длин показано на рис. 6.23.
[image:]
Рис. 6.23: Гистограмма длин предложений для английского и французского языков после фильтрации максимальной длины до 18 (20, если мы включаем токены <sos> и <eos>)
После фильтрации более длинных примеров мы создаем наши разбиения для обучения, проверки и тестирования без замены, используя технику перетасовки индекса, показанную ниже.
1 n examples = len (all data)
2 idx array = list (range (n examples))
3 random . shuffle (idx array)
4 train indexs = idx array [: int (0.8 ∗ n examples)] # 80% t r a i n i n g
data
5 val indexs = idx array [int (0.8 ∗ n examples) : int (0.9 ∗ n examples)
] # 10% v a l i d a t i o n d a t a
6 test indexs = idx array [int (0.9 ∗ n examples) :] # 10% t e s t i n g
Data

Этот метод должен обеспечить каждое разделение наборов данных схожими характеристиками.
В окончательном наборе данных 80% выделяется на обучение, 10% на проверку и 10% на тестирование.
Мы сохраняем данные в файлы, чтобы их можно было использовать в других экспериментах, если это необходимо, без необходимости повторять всю предварительную обработку. Анализ полученных разбиений данных показывает одинаковое распределение длины для каждого, как показано на рис. 6.24.
6.7.2.2. Проверка словарного запаса
Объект словаря предлагает множество общих функций НЛП, таких как индексированный доступ к терминам, упрощенное создание встраивания и частотная фильтрация.
Теперь мы загружаем и токенизируем разбиения данных. Общий объем словарного запаса составляет:
[image:]
[image:]
[image:]
Рис. 6.24: Гистограмма длин предложений для (a) обучающих данных, (b) данных проверки и (c) данных тестирования
1 train data , valid data , test data = FrenchTatoeba . splits (path=
data dir ,
2 exts =(’. en ’ , ’. fr ’) ,
3 f i e l d s =(SRC , TRG))
4
5 SRC . b u i l d vocab (train data , min freq =0)
6 TRG. b u i l d vocab (train data , min freq =0)
8 p r i n t (” E n g l i s h v o c a b u l a r y s i z e : ” , l e n (SRC . vocab))
9 p r i n t (” French v o c a b u l a r y s i z e : ” , l e n (TRG. vocab))
10
11 > English vocabulary size : 12227
12 > French vocabulary size : 20876

Словарные частоты показаны на рис. 6.25. Распределение отображает эффект «длинного хвоста», когда небольшое подмножество токенов имеет большое количество, например, «.» который встречается почти во всех предложениях, и другие лексемы, которые встречаются только один раз, например, «стежок». В самом крайнем случае, когда слово появляется только один раз, обучение полагается исключительно на этот единственный пример для информирования модели, что, вероятно, приводит к переобучению. Кроме того, распределение softmax приписывает некоторую вероятность
[image:]
[image:]
Рис. 6.25: Частота нефильтрованных слов для (а) английского и (б) французского языков. Подсчеты были отсортированы и помещены в логарифмическую шкалу, чтобы зафиксировать серьезность представлений слов в этом наборе данных. Как мы видим, есть много слов, которые используются редко, в то время как небольшое подмножество этих терминов используется часто.
Поскольку редко встречающиеся слова занимают большую часть словарного запаса, большая часть вероятностной массы будет приписана этим терминам на ранних стадиях, что замедляет обучение. Обычный подход - сопоставить редко встречающиеся слова с неизвестным токеном, <УНК>. Это позволяет модели игнорировать вероятное неверное представление недостаточно представленного набора терминов. Мы можем установить минимальную частоту, установив ее в качестве аргумента при построении словаря.
Набор обучающих данных используется для создания словаря (использование данных проверки считается отслеживанием данных). Мы устанавливаем минимальную частоту 5 во время создания словаря. Оценка влияния этого параметра оставлена ​​в качестве упражнения.
1 SRC . build vocab (train data , min freq =5)
2 TRG. build vocab (train data , min freq =5)

Изучая окончательный словарный запас, мы все же замечаем, что существует длинное хвостовое распределение частотности слов, показанное на рис. 7.26. Это не должно вызывать особого удивления, учитывая, что мы выбрали минимальную частоту 5. Если порог слишком высок, удаляется много слов, тогда модель становится слишком ограниченной в своем обучении, и многие значения сопоставляются с неизвестным токеном.
[image:][image:]

Рис. 6.26: График частоты терминов для отфильтрованного словаря обучающих данных (а) английского и (б) французского языков.
На рис. 6.27 показаны 50 основных терминов для английского и французского языков в обучающей выборке. Анализ списка приводит к некоторым интересным вопросам о данных. Например, одним из наиболее часто используемых слов в словарном списке является слово «нет». Это кажется странным, поскольку в английском языке нет слова «n’t». Более глубокая проверка показывает, что токенизация spaCy таким образом разбивает сокращения, оставляя изолированный токен «нет» всякий раз, когда появляется сокращение, такое как «не делать» или «не может». Такая же ситуация возникает при обработке сокращения «Я». Это иллюстрирует важность итерационных улучшений данных, поскольку предварительная обработка является фундаментальным компонентом генерации признаков, а также пост-обработка, если результаты вычисляются на окончательном выходе.
[image:]
Рис. 6.27: Подсчет частот для 20 самых популярных терминов из обучающей выборки для (а) английского и (б) французского языков.
Окончательные подсчеты наших разбиений данных показаны ниже.
1. Размер тренировочного набора: 107885
2. Размер набора для валидации: 13486
3. Размер набора для тестирования: 13486
4. Объем английского словарного запаса: 4755
5. Объем французского словарного запаса: 6450

6.7.3. Обучение модели
Теперь, когда набор данных готов, мы исследуем модели и их производительность на наборах для обучения и проверки. В частности, мы фокусируемся на различных простых RNN, LSTM и GRU. Каждая из этих архитектур исследуется на предмет скорости обучения, глубины и двунаправленности. Каждый метод включает оптимизацию нескольких гиперпараметров для регуляризации сети, а также изменение динамики обучения сети. Чтобы облегчить поиск по всей сетке по всем возможным гиперпараметрам, мы настраиваем скорость обучения только в соответствии с представленной архитектурой. Это не устраняет полностью необходимость настройки других параметров, но делает проблему решаемой.
Каждая обучаемая нами модель использует сценарий, показанный на рис. 6.28. Обратите внимание: конфигурации GRU и RNN не реализованы в fairseq. Мы добавили их в библиотеку для сравнения.
Каждая модель обучается максимум за 100 эпох. Мы снижаем скорость обучения при плато валидации и останавливаем при обучении на плато. Размер встраивания фиксирован на 256, а выпадение для входа и выхода установлено на 0,2. Для простоты мы установили скрытый размер 512 для всех экспериментов (кроме двунаправленных архитектур). Двунаправленный режим предоставляет декодеру два скрытых состояния, поэтому размер декодера должен удваиваться. Некоторые могут возразить, что сопоставимость моделей может быть достигнута только в том случае, если модели имеют одинаковое количество параметров. Например, LSTM имеют примерно в 4 раза больше параметров, чем стандартные RNN; однако для простоты и ясности мы сохраняем фиксированный скрытое представление. На следующих рисунках каждое название модели имеет форму {rnn type} {lr} {num sizes} {metric}.
1 python t r ai n . py d at a s et s / en−f r \
2 −−arch { rnn type } \
3 −−encoder−dropout −out 0.2 \
4 −−encoder−layers { n layers } \
5 −−encoder−hidden−size 512 \
6 −−encoder−embed−dim 256 \
7 −−decoder−layers { n layers } \
8 −−decoder−embed−dim 256 \
9 −−decoder−hidden−size 512 \
10 −−decoder−attention False \
11 −−decoder−dropout −out 0.2 \
12 −−o ptimize r adam −−l r { l r } \
13 −−l r −shrink 0.5 −−max−epoch 100 \
14 −−seed 1 −−log−format json \
15 −−num−workers 4 \
16 −−batch−size 512 \
17 −−weight−decay 0

Рис. 6.28: Базовая конфигурация обучения для нашей модели обучения Fairseq. Типом rnn, количеством слоев и скоростью обучения (lr) можно управлять, вставив соответствующий параметр соответствующим образом.
6.7.3.1. Базовый уровень RNN
Во-первых, мы исследуем производительность однослойной однонаправленной RNN в качестве основы для наших экспериментов. Мы выполняем ручной поиск по сетке по скорости обучения, чтобы найти разумное начальное значение. Полученные кривые валидации для этих выборов показаны на рис. 6.29.
Кривые проверки показывают, насколько скорость обучения влияет на способность модели к RNN, давая кардинально разные кривые обучения.
Мы также вычисляем результаты тестирования для этой модели, чтобы использовать их в конце для сравнения. Обратите внимание, что результат теста никоим образом не используется для настройки или улучшения наших моделей. Вся настройка выполняется с использованием набора для проверки. Любая настройка должна выполняться на проверочном наборе. Результат тестирования нашей лучшей модели RNN:
1 Переведено 13486 предложений:
2 Общие сведения с лучом = 1: BLEU4 = 15,46

[image:]
Рис. 6.29: Потеря валидации для однослойной RNN с разной скоростью обучения при переводе с английского на французский
6.7.3.2. Сравнение RNN, LSTM и GRU
Затем мы сравниваем архитектуры RNN, LSTM и GRU. Мы варьируем скорость обучения для каждого, поскольку динамика, вероятно, разная для каждой архитектуры. Результаты проверки показаны ниже на рис. 6.30.
При осмотре мы замечаем, что для схождения некоторых конфигураций требуется гораздо больше времени, чем для других. В частности, при скорости обучения 0,0001 архитектуры GRU и LSTM достигают максимальных 100 эпох. Во-вторых, мы видим, что архитектуры LSTM и GRU сходятся с меньшими потерями, намного быстрее и с более высокими темпами обучения, чем архитектуры RNN. ГРУ выглядит лучше всех модель здесь, но и LSTM, и GRU показывают аналогичную конвергенцию.
6.7.3.3. Сравнение глубины уровней RNN, LSTM и GRU
Теперь сравним влияние глубины на каждую архитектуру. Здесь мы изменяем конфигурацию глубины в дополнение к скорости обучения для каждой архитектуры. Разведанные глубины составляют 1, 2 и 4 слоя. Результаты представлены на рис. 6.31.
Теперь, когда у нас много моделей, становится труднее делать общие выводы об их свойствах. Если мы сравним модели RNN, мы заметим, что многие конфигурации сходятся с гораздо более высокими потерями при проверке, чем архитектуры GRU или LSTM. Мы также наблюдаем, что более глубокие архитектуры, как правило, хорошо работают с более низкими темпами обучения, чем их более мелкие аналоги. Кроме того, архитектуры LSTM и GRU достигают своих лучших моделей с глубиной 2 уровня и скоростью обучения 0,001.
[image:]
Рис. 6.30: Сравнение однослойных сетей RNN, GRU и LSTM при переводе с английского на французский
[image:]
Рис. 6.31: Сравнение глубины для архитектур (a) RNN, (b) LSTM и (c) GRU
6.7.3.4. Сравнение двунаправленных RNN, LSTM и GRU
Далее мы рассмотрим влияние двунаправленных моделей. Многие модели работают аналогично. На рис. 6.32b показана сложность прогнозов моделей (ppl) вместо потерь при проверке. Это значение равно 2loss, что преувеличивает эффекты на графике, что может быть полезно при визуальном просмотре кривых.
Мы снова видим, что архитектуры LSTM и GRU превосходят архитектуры RNN, а архитектура GRU работает немного лучше.
6.7.3.5. Глубокое двунаправленное сравнение
Пока что самыми эффективными моделями были двухуровневые модели LSTM и GRU и однослойные двунаправленные модели LSTM и GRU. Здесь мы объединяем два компонента, чтобы увидеть, являются ли преимущества дополнительными. В этом наборе экспериментов мы удаляем недостаточно эффективные модели RNN для ясности. Результаты показаны на рис. 6.33.
[image:]
Рис. 6.32: Сравнение (a) потерь при проверке и (b) ppl для одноуровневых, двунаправленных сетей RNN, GRU и LSTM. Обратите внимание, что, хотя цвета похожи, две верхние строки - это модели RNN (не модели GRU).
Этот набор результатов показывает, что двухуровневая архитектура GRU со скоростью обучения 0,001 является лучшей моделью в двунаправленном сравнении.
7.7.3.6. Трансформаторная сеть
Теперь обратим наше внимание на архитектуру трансформатора, где внимание уделяется непосредственно входной последовательности без включения повторяющихся сетей. Как и в предыдущих экспериментах, мы фиксируем размерность входа и выхода равной 256, устанавливаем 4 точки внимания как в кодере, так и в декодере, и фиксируем размер полностью связанных слоев равным 512. Мы исследуем небольшой выбор глубин и меняем скорость обучения соответственно.
Результаты показаны на рис. 6.34, где 4-слойная архитектура трансформатора со скоростью обучения 0,0005 дает наилучшие результаты.
[image:]
Рис. 6.33: Сравнение двухуровневых двунаправленных архитектур GRU и LSTM
[image:]
Рис. 6.34: Сравнение архитектур трансформаторов с разной скоростью и глубиной обучения. Обратите внимание, что глубина одинакова как для кодировщика, так и для декодера.
[image:]
Рис. 6.35: Сравнение лучших моделей NMT из предыдущих испытаний
6.7.3.6. Сравнение экспериментов
Изучив множество типов архитектур для машинного перевода, мы теперь сравним результаты каждого эксперимента. Этот набор включает в себя RNN с лучшими характеристиками из базовых экспериментов, однослойный однонаправленный и двунаправленный GRU, двухуровневый однонаправленный и двунаправленный GRU и четырехуровневую трансформаторную сеть. Сравнивая потери этих моделей на проверочном наборе (рис. 7.35), мы видим, что четырехуровневая трансформаторная сеть является нашим лучшим исполнителем.
6.7.4. Результаты
Теперь мы сравним модели из каждого эксперимента на тестовой выборке (таблица 7.1).
Таблица 6.1: Производительность сети NMT на тестовом наборе. Выделен лучший результат
	Тип сети
	Скорость обучения
	BLEU4

	Базовая РНН (1 слой)
	0,0005
	15,46

	ГРУ, 1-слойный
	0,001
	36,17

	ГРУ, 2-х слойный
	0,001
	38,53

	ГРУ, 1-слойный, двунаправленный
	0,005
	40,63

	ГРУ, 2-х слойный, двунаправленный
	0,001
	40,60

	Трансформатор, 4-х слойный
	0,0005
	44,07

Когда мы делаем выборку выходных данных модели (рис. 6.36), мы видим, что результаты выглядят довольно хорошо. Обратите внимание, как модель может давать разумные переводы, даже если она не может точно предсказать цель.
[image:]
Рис. 6.36: Результат наиболее эффективной модели NMT
В заключение мы показали, что для нашей задачи почти всегда предпочтительнее использовать архитектуры GRU или LSTM, а не базовые RNN. Кроме того, мы показали, что начальная скорость обучения оказывает значительное влияние на качество модели, даже при использовании методов адаптивной скорости обучения. Кроме того, скорость обучения необходимо настраивать для каждой конфигурации модели с учетом динамического характера глубоких сетей.
Наконец, более глубокие сети не всегда лучше. В этом наборе данных двухуровневые рекуррентные архитектуры превзошли четырехуровневые аналоги. Однослойный двунаправленный ГРУ продемонстрировал незначительные улучшения по сравнению с двухслойным аналогом на финальном наборе для тестирования, хотя он показал несколько худшие результаты при сравнении потерь при проверке.
Эти результаты показывают важность настройки гиперпараметров не только для приложения, но и для набора данных. В реальных приложениях рекомендуется настроить как можно больше гиперпараметров для достижения наилучшего результата.
6.7.5. Упражнения для читателей и практиков
Среди других интересных задач для читателей и практиков:
1. Добавьте к обучению регуляризацию L2 и посмотрите, улучшит ли она обобщение на тестовой выборке.
2. Сократите словарный запас, чтобы удалить более редкие термины (например, слова, которые встречаются менее 20 раз). Как это влияет на тренировку (производительность, качество)?
3. Настройте параметр поиска луча на набор данных проверки. Как это влияет на тестовые данные? Как это влияет на время предсказания?
4. Поэкспериментируйте с настройкой других гиперпараметров в кодировщике и декодере.
5. Что нужно изменить, чтобы изменить архитектуру задачи с ответами на вопросы?
6. Инициализируйте сеть с помощью предварительно обученных встраиваний.

6.8. Обсуждение
Результаты RNN по многим задачам NLP впечатляют, достигая самых современных результатов практически во всех областях. Их эффективность поразительна, учитывая их простоту. Однако на практике реальные настройки требуют дополнительных соображений, таких как небольшие наборы данных, отсутствие разнообразия в данных и обобщение. Ниже приводится краткое обсуждение этих проблем и общих дебатов, которые возникают.
6.8.1. Запоминание или обобщение
Все методы глубокого обучения, которые обсуждались до сих пор, сопряжены с риском переобучения. Кроме того, многие академические задачи для различных задач НЛП в значительной степени сосредоточены на конкретной проблеме с большим количеством данных, которые могут не отражать реальную задачу.5) Корреляция между данными обучения и тестирования позволяет получить некоторый уровень переобучения, чтобы быть выгодным как для валидации, так и для тестирования; однако остается спорным, являются ли эти корреляции просто репрезентативными для самой области. Трудность состоит в том, чтобы узнать, запоминает ли сеть определенные последовательности, которые важны для снижения общей стоимости или изучения корреляций, лежащих в основе семантической структуры проблемы. Некоторые из симптомов запоминания иллюстрируются необходимостью в алгоритмах декодирования, таких как поиск луча и случайный выбор с температурой для создания разнообразия в выходных последовательностях.
В исх. [Gre16] Грефенстетт исследовал вопрос о том, способны ли рекуррентные сети к обучению автоматическому выталкиванию, что, возможно, является самой простой формой вычислений, необходимой для естественного языка. В этой работе приводятся некоторые ограничения «простых RNN», как:
· Неадаптивная способность
· Моделирование целевой последовательности преобладает в обучении
· Кодировщик с ограниченным градиентом.
Предложение, сфокусированное конкретно на простых RNN, заключалось в том, что RNN, возможно, способны обучать только конечные автоматы.
В Liska et al. [LKB18] авторы изучали способность RNN изучать структуру композиции, которая показывала бы способность RNN передавать обучение от одной задачи к другой. Небольшое количество RNN в эксперименте показало, что можно изучать композиционные решения без архитектурных ограничений, хотя многие попытки RNN не увенчались успехом. Достигнутые результаты показывают, что градиентный спуск и эволюционные стратегии могут быть убедительным направлением для изучения композиционных структур.
5) Это не означает, что академические эталоны не актуальны, а скорее, чтобы указать на важность предметной области и технологического понимания для адаптации предметной области.
6.8.2. Будущее RNN
Одно из предложений из презентации Грефенстетта [Gre16] заключалось в том, чтобы рассматривать повторение как API. Мы видели признаки этого предложения в этой главе уже с ячейками LSTM и GRU. В этих примерах API повторения требуется только для удовлетворения взаимодействия: при заданном вводе и предыдущем состоянии создается вывод и обновленное состояние. Эта абстракция открывает путь для различных архитектур на основе памяти, таких как сети динамической памяти [XMS16] и stack-LSTM [Dye + 15].
Будущие направления указывают на добавление стеков и очередей, чтобы иметь более интерактивную модель памяти, подобную ОЗУ, с такими архитектурами, как нейронные машины Тьюринга [GWD14a].

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image38.emf

image39.emf

image1.emf

image2.emf

image3.emf

image4.emf

